首页 | 社区 | 博客 | 招聘 | 文章 | 新闻 | 下载 | 读书 | 代码
亲,您未登录哦! 登录 | 注册

用Visual C++ 5实现OpenGL编程

打印文章

分享到:
刘东玉

   一、OpenGL简介

  众所周知,OpenGL原先是Silicon Graphics Incorporated(SGI公司)在他们的图形工作站上开发高质量图像的接口。但最近几年它成为一个非常优秀的开放式三维图形接口。实际上它是图形软件和硬件的接口,它包括有120多个图形函数,"GL"是"GRAPHIC LIBRARY"的缩写,意思是“图形库”。OpenGL的出现使大多数的程序员能够在PC机上用C语言开发复杂的三维图形。微软在Visual C++ 5中已提供了三个OpenGL的函数库(glu32.lib, glau.lib,OpenGL32.lib),可以使我们方便地编程,简单、快速地生成美观、漂亮的图形。例如,Windows NT中的屏幕保护程序中的花篮和迷宫等都给人们留下了深刻的印象。

  二、生成OpenGL程序的基本步骤和条件

  本文将给出一个例子,这个例子是一个用OpenGL显示图像的Windows程序,通过这个程序我们也可以知道用OpenGL编程的基本要求。我们知道,GDI是通过设备句柄(Device Context以下简称"DC")来绘图,而OpenGL则需要绘制环境(Rendering Context,以下简称"RC")。每一个GDI命令需要传给它一个DC,与GDI不同,OpenGL使用当前绘制环境(RC)。一旦在一个线程中指定了一个当前RC,所有在此线程中的OpenGL命令都使用相同的当前RC。虽然在单一窗口中可以使用多个RC,但在单一线程中只有一个当前RC。本例将首先产生一个OpenGL RC并使之成为当前RC,分为三个步骤:设置窗口像素格式;产生RC;设置为当前RC。

  1、首先创建工程

  用AppWizard产生一个EXE文件,选择工程目录,并在工程名字中输入"GLSample1",保持其他的不变;第一步、选单文档(SDI);第二步、不支持数据库;第三步、不支持OLE;第四步、不选中浮动工具条、开始状态条、打印和预览支持、帮助支持的复选框(选中也可以,本文只是说明最小要求),选中三维控制(3D Controls);第五步、选中产生源文件注释并使用MFC为共享动态库;第六步、保持缺省选择。按Finish结束,工程创建完毕,如图1所示。

  (图注vc-1) 图1

  2、将此工程所需的OpenGL文件 和库加入到工程中

  在工程菜单中,选择"Build"下的"Settings"项。单击"Link"标签,选择"General"目录,在Object/Library Modules的编辑框中输入"OpenGL32.lib glu32.lib glaux.lib"(注意,输入双引号中的内容,各个库用空格分开;否则会出现链接错误),选择"OK"结束。然后打开文件"stdafx.h",将下列语句插入到文件中(划下划线的语句为所加语句):

  #define VC_EXTRALEAN // Exclude rarely-used stuff from Windows headers

  #include <afxwin.h> // MFC core and standard components

  #include <afxext.h> // MFC extensions

  #include <gl\gl.h>

  #include <gl\glu.h>

  #ifndef _AFX_NO_AFXCMN_SUPPORT

  #include <afxcmn.h> // MFC support for Windows 95 Common Controls

  #endif // _AFX_NO_AFXCMN_SUPPORT

  3、改写OnPreCreate函数并给视 类添加成员函数和成员变量

  OpenGL需要窗口加上WS_CLIPCHILDREN(创建父窗口使用的Windows风格,用于重绘时裁剪子窗口所覆盖的区域)和 WS_CLIPSIBLINGS(创建子窗口使用的Windows风格,用于重绘时剪裁其他子窗口所覆盖的区域)风格。把OnPreCreate改写成如下所示:

  

   BOOL CGLSample1View::PreCr- eateWindow(CREATESTRUCT& cs)

  {

   cs.style |= (WS_CLIPCHI- LDREN | WS_CLIPSIBLINGS);

   return CView::PreCreate- Window(cs);

  }

  

  产生一个RC的第一步是定义窗口的像素格式。像素格式决定窗口着所显示的图形在内存中是如何表示的。由像素格式控制的参数包括:颜色深度、缓冲模式和所支持的绘画接口。在下面将有对这些参数的设置。我们先在CGLSample1View的类中添加一个保护型的成员函数BOOL SetWindowPixel-Format(HDC hDC)(用鼠标右键添加),并编辑其中的代码,见程序1。

  BOOL CGLSample1View::SetWindowPixelFormat(HDC hDC)

  {

   PIXELFORMATDESCRIPTOR pixelDesc;

  pixelDesc.nSize = sizeof(PIXELFORMATDESCRIPTOR);

   pixelDesc.nVersion = 1;

   pixelDesc.dwFlags = PFD_DRAW_TO_WINDOW |

   PFD_DRAW_TO_BITMAP |

   PFD_SUPPORT_OpenGL |

   PFD_SUPPORT_GDI |

   PFD_STEREO_DONTCARE;

   pixelDesc.iPixelType = PFD_TYPE_RGBA;

   pixelDesc.cColorBits = 32;

   pixelDesc.cRedBits = 8;

   pixelDesc.cRedShift = 16;

   pixelDesc.cGreenBits = 8;

   pixelDesc.cGreenShift = 8;

   pixelDesc.cBlueBits = 8;

   pixelDesc.cBlueShift = 0;

   pixelDesc.cAlphaBits = 0;

   pixelDesc.cAlphaShift = 0;

   pixelDesc.cAccumBits = 64;

   pixelDesc.cAccumRedBits = 16;

   pixelDesc.cAccumGreenBits = 16;

   pixelDesc.cAccumBlueBits = 16;

   pixelDesc.cAccumAlphaBits = 0;

   pixelDesc.cDepthBits = 32;

   pixelDesc.cStencilBits = 8;

   pixelDesc.cAuxBuffers = 0;

   pixelDesc.iLayerType = PFD_MAIN_PLANE;

   pixelDesc.bReserved = 0;

   pixelDesc.dwLayerMask = 0;

   pixelDesc.dwVisibleMask = 0;

   pixelDesc.dwDamageMask = 0;

  

   m_GLPixelIndex = ChoosePixelFormat( hDC, &pixelDesc);

   if (m_GLPixelIndex==0) // Let's choose a default index.

   { m_GLPixelIndex = 1;

   if (DescribePixelFormat(hDC, m_GLPixelIndex,

   sizeof(PIXELFORMATDESCRIPTOR), &pixelDesc)==0)

   { return FALSE;

   }

   }

   if (SetPixelFormat( hDC, m_GLPixelIndex, &pixelDesc)==FALSE)

   { return FALSE;

   }

   return TRUE;

  }

  接着用鼠标右键在CGLSample1View中添加保护型的成员变量:

  int m_GLPixelIndex;

  4、用ClassWizard添加WM_CREATE的消息处理函数OnCreate

  添加OnCreate函数后如程序1所示。

  至此,OpenGL工程的基本框架就建好了。但如果你现在运行此工程,则它与一般的MFC程序看起来没有什么两样。

  5、代码解释

  现在我们可以看一看Describe-PixelFormat提供有哪几种像素格式,并对代码进行一些解释:

  PIXELFORMATDESCRIPTOR包括了定义像素格式的全部信息。

   DWFlags定义了与像素格式兼容的设备和接口。

  通常的OpenGL发行版本并不包括所有的标志(flag)。wFlags能接收以下标志:

  PFD_DRAW_TO_WINDOW 使之能在窗口或者其他设备窗口画图;

  PFD_DRAW_TO_BITMAP 使之能在内存中的位图画图;

  PFD_SUPPORT_GDI 使之能调用GDI函数(注:如果指定了PFD_DOUBLEBUFFER,这个选项将无效);

  PFD_SUPPORT_OpenGL 使之能调用OpenGL函数;

  PFD_GENERIC_FORMAT 假如这种象素格式由Windows GDI函数库或由第三方硬件设备驱动程序支持,则需指定这一项;

  PFD_NEED_PALETTE 告诉缓冲区是否需要调色板,本程序假设颜色是使用24或 32位色,并且不会覆盖调色板;

  PFD_NEED_SYSTEM_PALETTE 这个标志指明缓冲区是否把系统调色板当作它自身调色板的一部分;

  PFD_DOUBLEBUFFER 指明使用了双缓冲区(注:GDI不能在使用了双缓冲区的窗口中画图);

  PFD_STEREO 指明左、右缓冲区是否按立体图像来组织。

  PixelType定义显示颜色的方法。PFD_TYPE_RGBA意味着每一位(bit)组代表着红、绿、蓝各分量的值。PFD_TYPE_COLORINDEX 意味着每一位组代表着在彩色查找表中的索引值。本例都是采用了PFD_TYPE_RGBA方式。

  ● cColorBits定义了指定一个颜色的位数。对RGBA来说,位数是在颜色中红、绿、蓝各分量所占的位数。对颜色的索引值来说,指的是表中的颜色数。

  ● cRedBits、cGreenBits、cBlue-Bits、cAlphaBits用来表明各相应分量所使用的位数。

  ● cRedShift、cGreenShift、cBlue-Shift、cAlphaShift用来表明各分量从颜色开始的偏移量所占的位数。

  一旦初始化完我们的结构,我们就想知道与要求最相近的系统象素格式。我们可以这样做:

  

  m_hGLPixelIndex = ChoosePixelFormat(hDC, &pixelDesc);

  

  ChoosePixelFormat接受两个参数:一个是hDc,另一个是一个指向PIXELFORMATDESCRIPTOR结构的指针&pixelDesc;该函数返回此像素格式的索引值。如果返回0则表示失败。假如函数失败,我们只是把索引值设为1并用DescribePixelFormat得到像素格式描述。假如你申请一个没得到支持的像素格式,则Choose-PixelFormat将会返回与你要求的像素格式最接近的一个值。一旦我们得到一个像素格式的索引值和相应的描述,我们就可以调用SetPixelFormat设置像素格式,并且只需设置一次。

  现在像素格式已经设定,我们下一步工作是产生绘制环境(RC)并使之成为当前绘制环境。在CGLSample1View中加入一个保护型的成员函数BOOL CreateViewGLContext(HDC hDC),使之如下所示:

  BOOL CGLSample1View::CreateView GLContext(HDC hDC)

  { m_hGLContext = wglCreate Context(hDC);//用当前DC产生绘制环境(RC)

   if (m_hGLContext == NULL)

   { return FALSE;

   }

   if (wglMakeCurrent(hDC, m_hGLContext)==FALSE)

   { return FALSE;

   }

   return TRUE;

  }

  并加入一个保护型的成员变量HGLRC m_hGLContext;HGLRC是一个指向rendering context的句柄。

  在OnCreate函数中调用此函数:

  

  int CGLSample1View::OnCreate (LPCREATESTRUCT lpCreateStruct)

  {

  if (CView::OnCreate(lpCreateS truct) == -1)

   return -1;

   HWND hWnd = GetSafeHwnd();

   HDC hDC = ::GetDC(hWnd);

   if (SetWindowPixelFormat (hDC)==FALSE)

   return 0;

   if (CreateViewGLContext (hDC)==FALSE)

   return 0;

   return 0;

  }

  

  添加WM_DESTROY的消息处理函数Ondestroy( ),使之如下所示:

  

  void CGLSample1View::OnDestroy()

  {

   if(wglGetCurrentContext()!=NULL)

   { // make the rendering context not current

   wglMakeCurrent(NULL, NULL) ;

   }

   if (m_hGLContext!=NULL)

   { wglDeleteContext(m_hGLContext);

   m_hGLContext = NULL;

   }

   // Now the associated DC can be released.

   CView::OnDestroy();

  }

  

  最后,编辑CGLSample1View的构造函数,使之如下所示:

  

  CGLTutor1View::CGLTutor1View()

  { m_hGLContext = NULL;

   m_GLPixelIndex = 0;

  }

  

  至此,我们已经构造好了框架,使程序可以利用OpenGL进行画图了。你可能已经注意到了,我们在程序开头产生了一个RC,自始自终都使用它。这与大多数的GDI程序不同。在GDI程序中,DC在需要时才产生,并且是画完立刻释放掉。实际上,RC也可以这样做;但要记住,产生一个RC需要很多处理器时间。因此,要想获得高性能流畅的图像和图形,最好只产生RC一次,并始终用它,直到程序结束。

  CreateViewGLContex产生RC并使之成为当前RC。WglCreateContext返回一个RC的句柄。在你调用CreateViewGLContex之前,你必须用SetWindowPixelFormat(hDC)将与设备相关的像素格式设置好。wglMakeCurrent将RC设置成当前RC。传入此函数的DC不一定就是你产生RC的那个DC,但二者的设备句柄(Device Context)和像素格式必须一致。假如你在调用wglMakeforCurrent之前已经有另外一个RC存在,wglMakeforCurrent就会把旧的RC冲掉,并将新RC设置为当前RC。另外你可以用wglMakeCurrent(NULL, NULL)来消除当前RC。

  我们要在OnDestroy中把绘制环境删除掉。但在删除RC之前,必须确定它不是当前句柄。我们是通过wglGetCurrentContext来了解是否存在一个当前绘制环境的。假如存在,那么用wglMakeCurrent(NULL, NULL)来把它去掉。然后就可以通过wglDelete-Context来删除RC了。这时允许视类删除DC才是安全的。注:一般来说,使用的都是单线程的程序,产生的RC就是线程当前的RC,不需要关注上述这一点。但如果使用的是多线程的程序,那我们就特别需要注意这一点了,否则会出现意想不到的后果。

  三、实例

  下面给出一个简单的二维图形的例子(这个例子都是以上述设置为基础的)。

  用Classwizard为CGLSample2view添加WMSIZE的消息处理函数OnSize,使之如程序2所示。

  (图注getpwd2) 图2

  用Classwizard为CGLSample2view添加WM_PAINT的消息处理函数OnPaint,使之如程序3所示。

  这个程序的运行结果是黑色背景下的一个绚丽多彩的三角形(如图2所示)。这里你可以看到用OpenGL绘制图形非常容易,只需要几条简单的语句就能实现强大的功能。如果你缩放窗口,三角形也会跟着缩放。这是因为OnSize通过glViewport(0, 0, width, height)定义了视口和视口坐标。glViewport的第一、二个参数是视口左下角的像素坐标,第三、四个参数是视口的宽度和高度。

  OnSize中的glMatrixMode是用来设置矩阵模式的,它有三个选项:GL_MODELVIEW、GL_PROJECTION、GL_TEXTURE。GL_MODELVIEW表示从实体坐标系转到人眼坐标系。GL_PROJECTION表示从人眼坐标系转到剪裁坐标系。GL_TEXTURE表示从定义纹理的坐标系到粘贴纹理的坐标系的变换。

  glLoadIdentity初始化工程矩阵(project matrix);gluOrtho2D把工程矩阵设置成显示一个二维直角显示区域。

  这里我们有必要说一下OpenGL命令的命名原则。大多数OpenGL命令都是以"gl"开头的。也有一些是以"glu"开头的,它们来自OpenGL Utility。大多数"gl"命令在名字中定义了变量的类型并执行相应的操作。例如:glVertex2f就是定义了一个顶点,参数变量为两个浮点数,分别代表这个顶点的x、y坐标。类似的还有glVertex2d、glVertex2f、glVertex3I、glVertex3s、glVertex2sv、glVertex3dv……等函数。

  那么,怎样画三角形呢?我们首先调用glColor4f(1.0f, 0.0f, 0.0f, 1.0f),把红、绿、蓝分量分别指定为1、0、0。然后我们用glVertex2f(100.0f, 50.0f)在(100,50)处定义一个点。依次,我们在(450,400)处定义绿点,在(450,50)处定义蓝点。然后我们用glEnd结束画三角形。但此时三角形还没画出来,这些命令还只是在缓冲区里,直到你调用glFlush函数,由glFlush触发这些命令的执行。OpenGL自动改变三角形顶点间的颜色值,使之绚丽多彩。

  还可通过glBegin再产生新的图形。glBegin(GLenum mode)参数有:

  

  GL_POINTS,GL_LINES, GL_LINE_STRIP,GL_LINE_LOOP, GL_TRIANGLES,GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,GL_QUADS, GL_QUAD_STRIP, GL_POLYGON

  

  在glBegin和glEnd之间的有效函数有:

  glVertex,glColor,glIndex, glNormal,glTexCoord, glEvalCoord,glEvalPoint, glMaterial, glEdgeFlag

  

  四、OpenGL编程小结

  

  1、如果要响应WM_SIZE消息,则一定要设置视口和矩阵模式。

  2、尽量把你全部的画图工作在响应WM_PAINT消息时完成。

  3、产生一个绘制环境要耗费大量的CPU时间,所以最好在程序中只产生一次,直到程序结束。

  4、尽量把你的画图命令封装在文档类中,这样你就可以在不同的视类中使用相同的文档,节省你编程的工作量。

  5、glBegin和glEnd一定要成对出现,这之间是对图元的绘制语句。

  glPushMatrix()和glPopMatrix()也一定要成对出现。glPushMatrix()把当前的矩阵拷贝到栈中。当我们调用glPopMatrix时,最后压入栈的矩阵恢复为当前矩阵。使用glPushMatrix()可以精确地把当前矩阵保存下来,并用glPopMatrix把它恢复出来。这样我们就可以使用这个技术相对某个物体放置其他物体。例如下列语句只使用一个矩阵,就能产生两个矩形,并将它们成一定角度摆放。

  

  glPushMatrix();

   glTranslated( m_transX, m_transY, 0);

   glRotated( m_angle1, 0, 0, 1);

   glPushMatrix();

   glTranslated( 90, 0, 0);

   glRotated( m_angle2, 0, 0, 1);

   glColor4f(0.0f, 1.0f, 0.0f, 1.0f);

   glCallList(ArmPart);//ArmPart 且桓鼍卣竺

   glPopMatrix();

   glColor4f(1.0f, 0.0f, 0.0f, 1.0f);

   glCallList(ArmPart);

  glPopMatrix();

  

  6、 解决屏幕的闪烁问题。我们知道,在窗口中拖动一个图形的时候,由于边画边显示,会出现闪烁的现象。在GDI中解决这个问题较为复杂,通过在内存中生成一个内存DC,绘画时让画笔在内存DC中画,画完后一次用Bitblt将内存DC“贴”到显示器上,就可解决闪烁的问题。在OpenGL中,我们是通过双缓存来解决这个问题的。一般来说,双缓存在图形工作软件中是很普遍的。双缓存是两个缓存,一个前台缓存、一个后台缓存。绘图先在后台缓存中画,画完后,交换到前台缓存,这样就不会有闪烁现象了。通过以下步骤可以很容易地解决这个问题:

  1) 要注意,GDI命令是没有设计双缓存的。我们首先把使用InvalidateRect(null)的地方改成InvalidateRect(NULL,FALSE)。这样做是使GDI的重画命令失效,由OpenGL的命令进行重画;

  2) 将像素格式定义成支持双缓存的(注:PFD_DOUBLEBUFFER和PFD_SUPPORT_GDI只能取一个,两者相互冲突)。

  

   pixelDesc.dwFlags =

   PFD_DRAW_TO_WINDOW |

   PFD_SUPPORT_OPENGL |

   PFD_DOUBLEBUFFER |

   PFD_STEREO_DONTCARE;

  

  3) 我们得告诉OpenGL在后台缓存中画图,在视类的OnSize()的最后一行加入:glDrawBuffer (GL_BACK);

  4) 最后我们得把后台缓存的内容换到前台缓存中,在视类的OnPaint()的最后一行加入:SwapBuffers(dc.m_ ps.hdc)。

  7、生成简单的三维图形。我们知道,三维和二维的坐标系统不同,三维的图形比二维的图形多一个z坐标。我们在生成简单的二维图形时,用的是gluOrtho2D;我们在生成三维图形时,需要两个远近裁剪平面,以生成透视效果。实际上,二维图形只是视线的近裁剪平面z= -1,远裁剪平面z=1;这样z坐标始终当作0,两者没有本质的差别。

  在上述基础之上,我们只做简单的变化,就可以生成三维物体。

  1) 首先,在OnSize()中,把gluOrtho2D(0.0, 500.0*aspect,0.0, 500.0)换成gluPerspective(60, aspect, 1, 10.0);这样就实现了三维透视坐标系的设置。该语句说明了视点在原点,透视角是60度,近裁剪面在z=1处,远裁剪面在z=10.0处。

  2) 在RenderScene()中生成三维图形;实际上,它是由多边形组成的。下面就是一个三维多边形的例子:

  

  glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, RedSurface)

   glBegin(GL_POLYGON);

   glNormal3d( 1.0, 0.0, 0.0);

   glVertex3d( 1.0, 1.0, 1.0);

   glVertex3d( 1.0, -1.0, 1.0);

   glVertex3d( 1.0, -1.0, -1.0);

   glVertex3d( 1.0, 1.0, -1.0);

   glEnd();

  

  3) 我们使用glMaterialfv(GL_ FRONT_AND_BACK, GL_AMBIENT, RedSurface)这个函数来定义多边形的表面属性,为每一个平面的前后面设置环境颜色。当然,我们得定义光照模型,这只需在OnSize()的最后加上glEnable(GL_LIGHTING);RedSufFace是一个颜色分量数组,例如:RedSufFace[] ={1.0f,0.0f,0.0f};要定义某个平面的环境颜色,只需把glMaterialfv加在平面的定义前面即可,如上例所示。

  4) Z缓冲区的问题:要使三维物体显得更流畅,前后各面的空间关系正确,一定得使用Z缓冲技术;否则,前后各面的位置就会相互重叠,不能正确显示。Z缓冲区存储物体每一个点的值,这个值表明此点离人眼的距离。Z缓冲需要占用大量的内存和CPU时间。启用Z缓冲只需在OnSize()的最后加上glEnable(GL_DEPTH_TEST);要记住:在每次重绘之前,应使用glClear(GL_DEPTH_BUFFER_BIT)语句清空Z缓冲区。

  5) 现在已经可以正确地生成三维物体了,但还需要美化,可以使物体显得更明亮一些。我们用glLightfv函数定义光源的属性值。下例就定义了一个光源:

  

  glLightfv(GL_LIGHT0, GL_AMBIENT,LightAmbient);

  glLightfv(GL_LIGHT0, GL_DIFFUSE, LightDiffuse);

  glLightfv(GL_LIGHT0, GL_SPECULAR, LightSpecular);

  glLightfv(GL_LIGHT0, GL_POSITION, LightPosition);

  glEnable(GL_LIGHT0);

  

  GL_LIGHT0是光源的标识号,标识号由GL_LIGHTi组成(i从0到GL_MAX_LIGHTS)。 GL_AMBIENT、GL_DIFFUSE、GL_SPECULAR、GL_POSITION分别定义光源的周围颜色强度、光源的散射强度、光源的镜面反射强度和光源的位置。

  本文例子较简单,Visual C++5.0中还有很多例子。参照本文的设置,你一定能体会到OpenGL强大的图形、图像绘制功能。

  

  (作者地址:中国地质大学(武汉)研974班 430074 收稿日期:1999.4.30)

  

  

  void CGLSample2View::OnSize(UINT nType, int cx, int cy)

  {

   CView::OnSize(nType, cx, cy);

   GLsizei width, height;

   GLdouble aspect;

   width = cx;

   height = cy;

   if (cy==0)

   aspect = (GLdouble)width;

   else

   aspect = (GLdouble)width/(GLdouble)height;

  

   glViewport(0, 0, width, height);

   glMatrixMode(GL_PROJECTION);

   glLoadIdentity();

   gluOrtho2D(0.0, 500.0*aspect, 0.0, 500.0);

   glMatrixMode(GL_MODELVIEW);

   glLoadIdentity();

  }

  

  void CGLSample2View::OnPaint()

  { CPaintDC DC(this); // device context for painting (added by ClassWizard)

   glLoadIdentity();

   glClear(GL_COLOR_BUFFER_BIT);

   glBegin(GL_POLYGON);

   glColor4f(1.0f, 0.0f, 0.0f, 1.0f);

   glVertex2f(100.0f, 50.0f);

   glColor4f(0.0f, 1.0f, 0.0f, 1.0f);

   glVertex2f(450.0f, 400.0f);

   glColor4f(0.0f, 0.0f, 1.0f, 1.0f);

   glVertex2f(450.0f, 50.0f);

   glEnd();

   glFlush();

  } 

本栏文章均来自于互联网,版权归原作者和各发布网站所有,本站收集这些文章仅供学习参考之用。任何人都不能将这些文章用于商业或者其他目的。( Pfan.cn )

编程爱好者论坛

本栏最新文章